Product Description
Vibativ® (telavancin) for injection is a lipoglycopeptide antibacterial drug with dual mechanisms of action that inhibits cell wall synthesis and disrupts membrane barrier function in gram-positive bacteria.

Indications
Vibativ is indicated for the treatment of complicated skin and skin structure infections (cSSSI) and hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of Staphylococcus aureus.

Positioning
For patients requiring MRSA therapy where immediate action is required, VIBATIV is a preferred anti-MRSA treatment that is re-engineered and improved over vancomycin which produces high clinical cure rates in the most difficult-to-treat patients. When the stakes have increased and immediate success is necessary, VIBATIV gives you the confidence needed to cure the patient.

Competitive Advantages
- Vibativ uniquely exhibits bactericidal activity against gram-positive bacteria via dual mechanisms of action that inhibit cell wall synthesis and disrupt membrane barrier function.
- Vibativ is very effective against gram-positive clinical isolates, including MRSA, MSSA, and others with reduced susceptibility to agents like vancomycin and daptomycin.
- Vibativ has high levels of lung and skin penetration.
- Vibativ is the only anti-MRSA agent with data in the FDA approved product label for hospital and ventilator acquired pneumonia as well as concurrent S. aureus bacteremia.
- Vibativ has user-friendly once-daily dosing without therapeutic drug-level monitoring.
Literature Support

Mendes RE, Sader HS, Flamm RK, Farrell DJ, Jones RN.

Lunde CS, Hartouni SR, Janc JW, Mammen M, Humphrey PP, Benton BM.

Rubinstein E, Lalani T, Corey GR, et al, for the ATTAIN Study Group.


Smith JR, et al.
- Telavancin demonstrates activity against methicillin-resistant *Staphylococcus aureus* isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models. *Antimicrob Agents Chemother* 2015; 59(9): 5529-34

Duncan LR, et al.